Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.
Scheltens P. Responding to responsive behaviour in Alzheimer’s disease reply. Lancet. 2021;398:842–842.
Google Scholar
Gaugler J, James B, Johnson T, Reimer J, Solis M, Weuve J, et al. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18:700–89.
Google Scholar
Sadick JS, O’Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron. 2022;110:1788–+.
Google Scholar
Crimins JL, Rocher AB, Luebke JI. Electrophysiological changes precede morphological changes to frontal cortical pyramidal neurons in the rTg4510 mouse model of progressive tauopathy. Acta Neuropathologica. 2012;124:777–95.
Google Scholar
Anastacio HTD, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry. 2022;12:257.
Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321:1686–9.
Google Scholar
Busche MA, Grienberger C, Keskin AD, Song B, Neumann U, Staufenbiel M, et al. Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci. 2015;18:1725–7.
Google Scholar
Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711.
Google Scholar
Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65:404–11.
Google Scholar
Gail Canter R, Huang WC, Choi H, Wang J, Ashley Watson L, Yao CG, et al. 3D mapping reveals network-specific amyloid progression and subcortical susceptibility in mice. Commun Biol. 2019;2:360.
Aso E, Ferrer I. Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front Pharmacol. 2014;5:37.
Abate G, Uberti D, Tambaro S. Potential and Limits of Cannabinoids in Alzheimer’s Disease Therapy. Biol Basel. 2021;10:542.
Xiong YY, Lim CS. Understanding the Modulatory Effects of Cannabidiol on Alzheimer’s Disease. Brain Sci. 2021;11:1211.
Reardon S. Alzheimer’s drug donanemab: what promising trial means for treatments. Nature. 2023;617:232–3.
Google Scholar
Aso E, Sánchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J Alzheimers Dis. 2015;43:977–91.
Google Scholar
Martín-Moreno AM, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, et al. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer’s Disease. Mol Pharmacol. 2011;79:964–73.
Google Scholar
Cheng D, Spiro AS, Jenner AM, Garner B, Karl T. Long-Term Cannabidiol Treatment Prevents the Development of Social Recognition Memory Deficits in Alzheimer’s Disease Transgenic Mice. J Alzheimers Dis. 2014;42:1383–96.
Google Scholar
Hao FJ, Feng YQ. Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer’s mice uncovered by RNA-seq. Life Sci. 2021;264:118624.
Defrancesco M, Hofer A. Cannabinoid as Beneficial Replacement Therapy for Psychotropics to Treat Neuropsychiatric Symptoms in Severe Alzheimer’s Dementia: A Clinical Case Report. Front Psychiatry, 2020;11:413.
Xiong W, Cheng K, Cui T, Godlewski G, Rice KC, Xu Y, et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol. 2011;7:296–303.
Google Scholar
Xiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting alpha3 glycine receptors. J Exp Med. 2012;209:1121–34.
Google Scholar
Xiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, et al. Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci. 2014;17:232–9.
Google Scholar
Zou G, Xia J, Han Q, Liu D, Xiong W. The synthetic cannabinoid dehydroxylcannabidiol restores the function of a major GABA(A) receptor isoform in a cell model of hyperekplexia. J Biol Chem. 2020;295:138–45.
Google Scholar
Zou G, Zuo X, Chen K, Ge Y, Wang X, Xu G, et al. Cannabinoids Rescue Cocaine-Induced Seizures by Restoring Brain Glycine Receptor Dysfunction. Cell Rep. 2020;30:4209–+.
Google Scholar
Zou G, Xia J, Luo H, Xiao D, Jin J, Miao C, et al. Combined alcohol and cannabinoid exposure leads to synergistic toxicity by affecting cerebellar Purkinje cells. Nat Metab. 2022;4:1138–+.
Google Scholar
Pertwee R. Pharmacological actions of cannabinoids. Eur Neuropsychopharmacol. 2010;20:S205.
Google Scholar
Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharm. 2006;69:991–7.
Google Scholar
Yevenes GE, Zeilhofer HU. Allosteric modulation of glycine receptors. Br J Pharmacol. 2011;164:224–36.
Google Scholar
Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ. Changes on the properties of glycine receptors during neuronal development. Brain Res Rev. 2004;47:33–45.
Google Scholar
Zeilhofer HU, Wildner H, Yevenes GE. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control. Physiological Rev. 2012;92:193–235.
Google Scholar
Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84:1051–95.
Google Scholar
McCracken LM, Lowes DC, Salling MC, Carreau-Vollmer C, Odean NN, Blednov YA, et al. Glycine receptor alpha3 and alpha2 subunits mediate tonic and exogenous agonist-induced currents in forebrain. Proc Natl Acad Sci USA. 2017;114:E7179–86.
Google Scholar
Aitta-Aho T, Maksimovic M, Dahl K, Sprengel R, Korpi ER. Attenuation of Novelty-Induced Hyperactivity of Gria1-/- Mice by Cannabidiol and Hippocampal Inhibitory Chemogenetics. Front Pharmacol. 2019;10:309.
Google Scholar
Driscoll LN, Pettit NL, Minderer M, Chettih SN, Harvey CD. Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell. 2017;170:986–+.
Google Scholar
Wilkinson SM, Price J, Kassiou M. Improved accessibility to the desoxy analogues of Delta(9)-tetrahydrocannabinol and cannabidiol. Tetrahedron Lett. 2013;54:52–54.
Google Scholar
Zhang R, Xue G, Wang S, Zhang L, Shi C, Xie X. Novel Object Recognition as a Facile Behavior Test for Evaluating Drug Effects in A beta PP/PS1 Alzheimer’s Disease Mouse Model. J Alzheimers Dis. 2012;31:801–12.
Google Scholar
Rocha M, Wang D, Avila-Quintero V, Bloch MH, Kaffman A. Deficits in hippocampal-dependent memory across different rodent models of early life stress: systematic review and meta-analysis. Transl Psychiatry. 2021;11:231.
Google Scholar
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-beta Pathway in Alzheimer’s Disease. Mol Psychiatry. 2021;26:5481–503.
Google Scholar
Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18.
Google Scholar
Yuan P, Grutzendler J. Attenuation of beta-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632–41.
Google Scholar
Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in Microglia Regulates Brain Amyloid Deposition through Selective Protofibrillar Amyloid-beta Phagocytosis. J Neurosci. 2010;30:17091–101.
Google Scholar
Condello C, Schain A, Grutzendler J. Multicolor time-stamp reveals the dynamics and toxicity of amyloid deposition. Sci Rep. 2011;1:19.
Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612:328–+.
Google Scholar
Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, et al. Microglial Piezo1 senses AD fibril stiffness to restrict Alzheimer’s disease. Neuron. 2023;111:15–+.
Google Scholar
Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s (corrected) disease model. Nat Commun. 2014;5:4159.
Google Scholar
Cho E, Jeon SJ, Jeon J, Yi JH, Kwon H, Kwon HJ, et al. Phyllodulcin improves hippocampal long-term potentiation in 5XFAD mice. Biomed Pharmacother. 2023;161:114511.
Google Scholar
Cho E, Youn K, Kwon H, Jeon J, Cho WS, Park SJ, et al. Eugenitol ameliorates memory impairments in 5XFAD mice by reducing Aβ plaques and neuroinflammation. Biomed Pharmacother. 2022;148:112763.
Google Scholar
Wang M, Jo J, Song J. Adiponectin improves long-term potentiation in the 5XFAD mouse brain. Sci Rep. 2019;9:8918.
Google Scholar
Xu TL, Gong N. Glycine and glycine receptor signaling in hippocampal neurons: Diversity, function and regulation. Prog Neurobiol. 2010;91:349–61.
Google Scholar
Wei Y, Li R, Meng Y, Hu T, Zhao J, Gao Y, et al. Article Transport mechanism and pharmacology of the human GlyT1. Cell. 2024;187:1719–1732.e14.
Google Scholar
Khasabova IA, Xiong Y, Coicou LG, Piomelli D, Seybold V. A Common Molecular Basis for Exogenous and Endogenous Cannabinoid Potentiation of Glycine Receptors (April, pg 5200, 2012). J Neurosci. 2012;32:12979–12979.
Lu J, Fan S, Zou G, Hou Y, Pan T, Guo W, et al. Involvement of glycine receptor alpha1 subunits in cannabinoid-induced analgesia. Neuropharmacology. 2018;133:224–32.
Google Scholar
Wells MM, Tillman TS, Mowrey DD, Sun T, Xu Y, Tang P. Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor alpha1 for the treatment of pain. J Med Chem. 2015;58:2958–66.
Google Scholar
Resendez SL, Jennings JH, Ung RL, Namboodiri VM, Zhou ZC, Otis JM, et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 2016;11:566–97.
Google Scholar
Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, et al. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int J Mol Sci. 2022;23:13954.
Google Scholar
Jiang N, Cupolillo D, Grosjean N, Muller E, Deforges S, Mulle C, et al. Impaired plasticity of intrinsic excitability in the alters spike transfer in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021;154:105345.
Google Scholar
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer’s disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis. 2021;152:105274.
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, et al. Microstructural mapping of dentate gyrus pathology in Alzheimer?s disease: A 16.4 Tesla MRI study. Neuroimage Clin. 2023;37:103318.
Google Scholar
Mol MO, Miedema SSM, Melhem S, Li KW, Koopmans F, Seelaar H, et al. Proteomics of the dentate gyrus reveals semantic dementia specific molecular pathology. Acta Neuropathologica Commun. 2022;10:190.
Google Scholar
Bezzina C, Verret L, Juan C, Remaud J, Halley H, Rampon C, et al. Early Onset of Hypersynchronous Network Activity and Expression of a Marker of Chronic Seizures in the Tg2576 Mouse Model of Alzheimer’s Disease. Plos One. 2015;10:e0119910.
Google Scholar
Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J, et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci USA. 2003;100:9572–7.
Google Scholar
Nägerl UV, Mody I, Jeub M, Lie AA, Elger CE, Beck H. Surviving granule cells of the sclerotic human hippocampus have reduced Ca influx because of a loss of calbindin-D in temporal lobe epilepsy. J Neurosci. 2000;20:1831–6.
Google Scholar
Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47:867–72.
Google Scholar
Hanson JE, Ma K, Elstrott J, Weber M, Saillet S, Khan AS, et al. GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer’s Disease Models. Cell Rep. 2020;30:381–+.
Google Scholar
Rubin R. The Path to the First FDA-Approved Cannabis-Derived Treatment and What Comes Next. J Am Med Assoc. 2018;320:1227–9.
Google Scholar
Killestein J. Cannabinoids in the Treatment of Epilepsy. N Engl J Med. 2016;374:94–5.
Britch SC, Babalonis S, Walsh SL. Cannabidiol: pharmacology and therapeutic targets. Psychopharmacology. 2021;238:9–28.
Google Scholar
Avila A, Vidal PM, Tielens S, Morelli G, Laguesse S, Harvey RJ, et al. Glycine receptors control the generation of projection neurons in the developing cerebral cortex. Cell Death Differ. 2014;21:1696–708.
Google Scholar
Lin MS, Xiong WC, Li SJ, Gong Z, Cao X, Kuang XJ, et al. α2-glycine receptors modulate adult hippocampal neurogenesis and spatial memory. Dev Neurobiol. 2017;77:1430–41.
Google Scholar
Xiong W, Cui T, Cheng K, Yang F, Chen SR, Willenbring D, et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J Exp Med. 2012;209:1121–34.
Google Scholar
Harvey RJ, Depner UB, Wässle H, Ahmadi S, Heindl C, Reinold H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004;304:884–7.
Google Scholar
McCracken LM, Lowes DC, Salling MC, Carreau-Vollmer C, Odean NN, Blednov YA, et al. Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain. Proc Natl Acad Sci USA. 2017;114:E7179–e7186.
Google Scholar
Yang S, Du Y, Zhao X, Tang Q, Su W, Hu Y, et al. Cannabidiol Enhances Microglial Beta-Amyloid Peptide Phagocytosis and Clearance via Vanilloid Family Type 2 Channel Activation. Int J Mol Sci. 2022;23:5367.
Google Scholar
Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.
Google Scholar
González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.
Google Scholar
Watt G, Shang K, Zieba J, Olaya J, Li H, Garner B, et al. Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ40 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice. J Alzheimers Dis. 2020;74:937–50.
Google Scholar
Coles M, Watt G, Kreilaus F, Karl T. Medium-Dose Chronic Cannabidiol Treatment Reverses Object Recognition Memory Deficits of APP (Swe) /PS1ΔE9 Transgenic Female Mice. Front Pharm. 2020;11:587604.
Google Scholar
McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharm. 2015;172:737–53.
Google Scholar
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern C, Bertoglio LJ, et al. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology. 2019;236:201–26.
Google Scholar
Calvo‐Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem. 2018;146:649–69.
Google Scholar
Carello-Collar G, Bellaver B, Ferreira PCL, Ferrari-Souza JP, Ramos VG, Therriault J, et al. The GABAergic system in Alzheimer’s disease: a systematic review with meta-analysis. Mol Psychiatry. 2023;28:5025–36.
Jacob TC, Moss SJ, Jurd R. GABA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9:331–43.
Google Scholar
Muñoz B, Mariqueo T, Murath P, Peters C, Yevenes GE, Moraga-Cid G, et al. Modulatory Actions of the Glycine Receptor beta Subunit on the Positive Allosteric Modulation of Ethanol in alpha 2 Containing Receptors. Front Mol Neurosci. 2021;14:763868.
Google Scholar