Peeri, H. & Koltai, H. Cannabis biomolecule effects on cancer cells and cancer stem cells: Cytotoxic, anti-proliferative, and anti-migratory activities. Biomolecules 12, 491 (2022).
Google Scholar
Blebea, N. M., Hancu, G., Vlad, R. A. & Pricopie, A. Applications of capillary electrophoresis for the determination of cannabinoids in different matrices. Molecules 28, 638 (2023).
Google Scholar
Niloy, N. et al. Effect of cannabis on memory consolidation, learning and retrieval and its current legal status in India: A review. Biomolecules 13, 162 (2023).
Google Scholar
Hall, W. et al. Public health implications of legalising the production and sale of cannabis for medicinal and recreational use. The Lancet 394, 1580–1590 (2019).
Google Scholar
Schanknecht, E., Bachari, A., Nassar, N., Piva, T. & Mantri, N. Phytochemical constituents and derivatives of Cannabis sativa: Bridging the gap in Melanoma treatment. Int J Mol Sci 24, 859 (2023).
Google Scholar
de Brito Siqueira, A. L. G. et al. Phytocannabinoids: Pharmacological effects, biomedical applications, and worldwide prospection. J. Tradit. Complement. Med. 13, 575–587 (2023).
Google Scholar
Koltai, H. & Shalev, N. Anti-cancer activity of Cannabis sativa phytocannabinoids: Molecular mechanisms and potential in the fight against ovarian cancer and stem cells. Cancers 14, 4299 (2022).
Google Scholar
Tarasiuk, A., Mirocha, G. & Fichna, J. Current status of complementary and alternative medicine interventions in the management of pancreatic cancer—An overview. Curr. Treat. Options Oncol. 24, 1852–1869 (2023).
Google Scholar
Bautista, J. L., Yu, S. & Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, bioactivities, and biotechnology. ACS Omega 6, 5119–5123 (2021).
Google Scholar
Prateeksha, P. et al. Tetrahydrocannabinols: Potential cannabimimetic agents for cancer therapy. Cancer Metastasis Rev.https://doi.org/10.1007/s10555-023-10078-2 (2023).
Google Scholar
Atalay Ekiner, S., Gęgotek, A. & Skrzydlewska, E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol. 57, 102489 (2022).
Google Scholar
Khalsa, J. H. et al. Review: Cannabinoids as medicinals. Curr. Addict. Rep. 9, 630–646 (2022).
Google Scholar
Almeida, C. F., Teixeira, N., Correia-da-Silva, G. & Amaral, C. Cannabinoids in breast cancer: Differential susceptibility according to subtype. Molecules 27, 156 (2021).
Google Scholar
Velasco, G., Sánchez, C. & Guzmán, M. Anticancer mechanisms of cannabinoids. Curr. Oncol. 23, S23–S32 (2016).
Google Scholar
Tomko, A. M., Whynot, E. G., Ellis, L. D. & Dupré, D. J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in Cannabis. Cancers 12, 1985 (2020).
Google Scholar
Kovalchuk, O. & Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle 19, 961–989 (2020).
Google Scholar
Marcu, J. P. et al. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther. 9, 180–189 (2010).
Google Scholar
Armstrong, J. L. et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J. Invest. Dermatol. 135, 1629–1637 (2015).
Google Scholar
Scott, K. A., Dalgleish, A. G. & Liu, W. M. Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration. Int. J. Oncol. 51, 369–377 (2017).
Google Scholar
Schoeman, R., de la Harpe, A., Beukes, N. & Frost, C. L. Cannabis with breast cancer treatment: Propitious or pernicious?. 3 Biotech 12, 54 (2022).
Google Scholar
Prodhan, A. S. U. et al. Breast cancer management in the Era of Covid-19; key issues, contemporary strategies, and future implications. BCTT 15, 51–89 (2023).
Google Scholar
Cardiff, R. D. & Borowsky, A. D. At last: Classification of human mammary cells elucidates breast cancer origins. J. Clin. Invest. 124, 478–480 (2014).
Google Scholar
Yin, L., Duan, J.-J., Bian, X.-W. & Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research 22, 61 (2020).
Google Scholar
Turashvili, G. & Brogi, E. Tumor heterogeneity in breast cancer. Front. Med. 4, 227 (2017).
Google Scholar
Huntley, A. L., de Valois, B., Dog, T. L. & Borrelli, F. Complementary and alternative medicine and cancer survivorship. Evid. Based Complement Alternat. Med. 2012, 850429 (2012).
Google Scholar
Shebaby, W. et al. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). J. Ethnopharmacol. 270, 113743 (2021).
Google Scholar
Nafeh, G. et al. Urtica dioica leaf infusion enhances the sensitivity of triple-negative breast cancer cells to cisplatin treatment. Pharmaceuticals 16, 780 (2023).
Google Scholar
Sayyed, K. et al. Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol. Vitro 83, 105409 (2022).
Google Scholar
Idriss, M., Hodroj, M. H., Fakhoury, R. & Rizk, S. Beta-tocotrienol exhibits more cytotoxic effects than gamma-tocotrienol on breast cancer cells by promoting apoptosis via a P53-independent PI3-kinase dependent pathway. Biomolecules 10, 577 (2020).
Google Scholar
El Khoury, M. et al. Malva pseudolavatera leaf extract promotes ROS induction leading to apoptosis in acute Myeloid Leukemia cells in vitro. Cancers 12, 435 (2020).
Google Scholar
Husein, D. M. et al. Severe pathogenic variants of intestinal sucrase-isomaltase interact avidly with the wild type enzyme and negatively impact its function and trafficking. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 1868, 166523 (2022).
Google Scholar
Baz, J. et al. Enhanced potency of a chloro-substituted polyaromatic platinum(II) complex and its platinum(IV) prodrug against lung cancer. Chem. Biol. Interact. 388, 110834 (2024).
Google Scholar
Subcellular Fractionation Protocol. https://www.abcam.com/en-fr/technical-resources/protocols/subcellular-fractionation.
Tannous, S., Haykal, T., Dhaini, J., Hodroj, M. H. & Rizk, S. The anti-cancer effect of flaxseed lignan derivatives on different acute Myeloid Leukemia cancer cells. Biomed. Pharmacother. 132, 110884 (2020).
Google Scholar
El Hayek, L. et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 39, 2369–2382 (2019).
Google Scholar
Younes, M. et al. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line. BMC Complement. Med. Ther. 20, 343 (2020).
Google Scholar
Haykal, T. et al. Annona Cherimola Seed extract activates extrinsic and intrinsic apoptotic pathways in leukemic cells. Toxins 11, 1–18 (2019).
Google Scholar
Leinen, Z. J. et al. Therapeutic potential of Cannabis: A comprehensive review of current and future applications. Biomedicines 11, 2630 (2023).
Google Scholar
Massi, P. et al. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J. Pharmacol. Exp. Ther. 308, 838–845 (2004).
Google Scholar
Massi, P., Solinas, M., Cinquina, V. & Parolaro, D. Cannabidiol as potential anticancer drug. Br. J. Clin. Pharmacol. 75, 303–312 (2013).
Google Scholar
Allister, S. D. M. et al. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J. Neurooncol. 74, 31–40 (2005).
Google Scholar
Takeda, S. et al. Δ9-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ). Chem. Res. Toxicol.https://doi.org/10.1021/tx4000446 (2013).
Google Scholar
Mashabela, M. D. & Kappo, A. P. Anti-cancer and anti-proliferative potential of cannabidiol: A cellular and molecular perspective. Int. J. Mol. Sci. 25, 5659 (2024).
Google Scholar
Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009).
Google Scholar
Shrivastava, A., Kuzontkoski, P. M., Groopman, J. E. & Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 10, 1161–1172 (2011).
Google Scholar
Fulda, S. Autophagy in cancer therapy. Front. Oncol. 7, 128 (2017).
Google Scholar
Hermanson, D. J. & Marnett, L. J. Cannabinoids, endocannabinoids and cancer. Cancer Metastasis Rev. 30, 599–612 (2011).
Google Scholar
Garcia-Arencibia, M., Molina-Holgado, E. & Molina-Holgado, F. Effect of endocannabinoid signalling on cell fate: Life, death, differentiation and proliferation of brain cells. Br. J. Pharmacol. 176, 1361–1369 (2019).
Google Scholar
Lukhele, S. T. & Motadi, L. R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Alternat. Med. 16, 335 (2016).
Google Scholar
Matassov, D., Kagan, T., Leblanc, J., Sikorska, M. & Zakeri, Z. Measurement of Apoptosis by DNA Fragmentation. In Apoptosis Methods and Protocols (ed. Brady, H. J. M.) 1–17 (Humana Press, Totowa, 2004).
Jeong, S. et al. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis. 10, 1–13 (2019).
Google Scholar
Khodapasand, E., Jafarzadeh, N., Farrokhi, F., Kamalidehghan, B. & Houshmand, M. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer?. Iran. Biomed. J. 19, 69–75 (2015).
Google Scholar
Volkmann, N., Marassi, F. M., Newmeyer, D. D. & Hanein, D. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ 21, 206–215 (2014).
Google Scholar
Gross, C., Ramirez, D. A., McGrath, S. & Gustafson, D. L. Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol. 12, 725136 (2021).
Google Scholar
Malheiro, R. F., Carmo, H., Carvalho, F. & Silva, J. P. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol. Res. 187, 106603 (2023).
Google Scholar
Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Δ9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L298–L306 (2003).
Google Scholar
Atalay, S., Jarocka-Karpowicz, I. & Skrzydlewska, E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 9, 21 (2019).
Google Scholar
Emhemmed, F. et al. Cannabis sativa extract induces apoptosis in human pancreatic 3D cancer models: Importance of major antioxidant molecules present therein. Molecules 27, 1214 (2022).
Google Scholar
Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. Apoptosis: Mechanisms and relevance in cancer. Ann. Hematol. 84, 627–639 (2005).
Google Scholar
Mashimo, M. et al. The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J. Biol. Chem. 296, 100046 (2021).
Google Scholar
Leelawat, S. et al. Anticancer activity of Δ9-tetrahydrocannabinol and cannabinol in vitro and in human lung cancer xenograft. Asian Pacific J. Trop. Biomed. 12, 323 (2022).
Google Scholar
Lombard, C., Nagarkatti, M. & Nagarkatti, P. S. Targeting cannabinoid receptors to treat leukemia: Role of cross-talk between extrinsic and intrinsic pathways in Δ9-tetrahydrocannabinol (THC)-induced apoptosis of Jurkat cells. Leukemia Res. 29, 915–922 (2005).
Google Scholar
Rieder, S. A., Chauhan, A., Singh, U., Nagarkatti, M. & Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215, 598–605 (2010).
Google Scholar
Nabissi, M. et al. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget 7, 77543–77557 (2016).
Google Scholar
Cho, D.-H. et al. Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 274, 95–100 (2009).
Google Scholar
Fan, Y.-J. & Zong, W.-X. The cellular decision between apoptosis and autophagy. Chin. J. Cancer 32, 121–129 (2013).
Google Scholar
Velasco, G., Hernández-Tiedra, S., Dávila, D. & Lorente, M. The use of cannabinoids as anticancer agents. Progress Neuro-Psychopharmacol. Biol. Psychiatry 64, 259–266 (2016).
Google Scholar
Hosami, F., Ghadimkhah, M. H., Salimi, V., Ghorbanhosseini, S. S. & Tavakoli-Yaraki, M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed. Pharmacother. 144, 112279 (2021).
Google Scholar
Elbaz, M. et al. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of cannabidiol in breast cancer. Mol. Oncol. 9, 906–919 (2015).
Google Scholar
Ramer, R., Merkord, J., Rohde, H. & Hinz, B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem. Pharmacol. 79, 955–966 (2010).
Google Scholar
Martin, T. A., Ye, L., Sanders, A. J., Lane, J. & Jiang, W. G. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In Madame Curie Bioscience Database (Internet) (Landes Bioscience, 2013).
Cabral-Pacheco, G. A. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21, 9739 (2020).
Google Scholar
Anis, O. et al. Cannabis-derived compounds Cannabichromene and Δ9-tetrahydrocannabinol interact and exhibit cytotoxic activity against urothelial cell carcinoma correlated with inhibition of cell migration and cytoskeleton organization. Molecules 26, 465 (2021).
Google Scholar
O’Reilly, E. et al. Cannabidiol inhibits the proliferation and invasiveness of prostate cancer cells. J. Nat. Prod. 86, 2151–2161 (2023).
Google Scholar
Dariš, B., Verboten, M. T., Knez, Ž & Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn J. Basic Med. Sci 19, 14–23 (2019).
Google Scholar
Cherkasova, V. et al. Use of Cannabis and cannabinoids for treatment of cancer. Cancers 14, 5142 (2022).
Google Scholar